Attachment of Li[Ni0.2Li0.2Mn0.6]O2 Nanoparticles to the Graphene Surface Using Electrostatic Interaction Without Deterioration of Phase Integrity

نویسندگان

  • Min Ho Pyun
  • Yong Joon Park
چکیده

In this article, we report a facile approach to enhance the electrochemical performance of Li-rich oxides with vulnerable phase stability. The Li-rich oxide nanoparticles were attached to the surface of graphene; the graphene surface acted as a matrix with high electronic conductivity that compensated for the low conductivity and enhanced the rate capability of the oxides. Our novel approach constitutes a direct assembly of two materials via electrostatic interaction, without a high-temperature heat treatment. The inevitable deterioration in phase integrity of previous composites between carbon and Li-rich oxides resulted from the reaction of oxygen in the structure with carbon during the heat-treatment process. However, our new method successfully attached Li-rich nanoparticles to the surface of graphene, without a phase change of the oxides. The resulting graphene/Li-rich oxide composites exhibited superior capacity and rate capability compared to their pristine Li-rich counterparts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-5: Molcular and Cellular Interactions in UterineReceptivity for Implantation

Background: Though plausible candidate adhesion systems have been identified, current knowledge of embryo-maternal attachment in human is limited by the inability to conduct well-controlled functional investigations. We have sought a viable medium-throughput model for the identification and functional assessment of molecular markers in the initial epithelial phases of implantation. An ideal mod...

متن کامل

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

Study on Sunitinib Adsorption on Graphene Surface as an Anticancer Drug

In recent years, Nano technology and its application have moved to discovering chemicaltherapy drugs. Research, development for finding new targets in tumors, targeting methodsand stabilizing the nano particle in targeted cells is based on drug delivery and its crucialeffect. Examining the computational controlled drug delivery by graphene sheets has becomevery significant due to numerous side ...

متن کامل

Graphene–ZnO@SiO2 hybrid: An efficient and solid acid catalyst for synthesis of azlactones under ultrasound irradiation

The central theme of this article is how to explore a novel route to fabricate graphene– ZnO@SiO2 hybrid by a covalent process. The synthesis procedure consists of three-steps: (1) synthesis of ZnO nanoparticles, (2) ZnO nanoparticles modification by tetraethyl orthosilicate and (3-aminopropyl) triethoxysilane after introduction of amino groups on its surface, (3) the covalent attach...

متن کامل

Graphene–ZnO@SiO2 hybrid: An efficient and solid acid catalyst for synthesis of azlactones under ultrasound irradiation

The central theme of this article is how to explore a novel route to fabricate graphene– ZnO@SiO2 hybrid by a covalent process. The synthesis procedure consists of three-steps: (1) synthesis of ZnO nanoparticles, (2) ZnO nanoparticles modification by tetraethyl orthosilicate and (3-aminopropyl) triethoxysilane after introduction of amino groups on its surface, (3) the covalent attach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016